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Rayleigh-Taylor Instability
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Rayleigh-Taylor Instability

The problem proposed is a situation with 2 fluids, one atop
the other with different densities. Between them is the
interface η(x , t) which is a perturbation across y = 0.

Some assumptions are made:
The vorticity is 0 (it is irrotational) so ∇× v = 0
It is incompressible, meaning the volume is constant. This
results in ∇ · v = 0



Equations of State and Boundary Conditions
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Form of Solution and Dispersion Relation

φ1(x , y , t) = F1(y)exp[i(kx − ωt)]

φ2(x , y , t) = F2(y)exp[i(kx − ωt)]

ω = ±i
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Solution and Analysis

Re(η) = A1 cos(kx)

√
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g(ρ2 − ρ1)
(eβt − e−βt)

This is an unstable exponentially growing standing wave if
ρ2 > ρ1, and is a stable standing wave if ρ1 > ρ2



Rayleigh-Taylor Instability with Surface Tension
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Instability of Fluids with Interfacial Tension

Net upward force per unit area due to interfacial tension
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Form of Solution and Dispersion Relation

The form of solution:

η(x , t) = η0exp[i(kx − ωt)]

φ1(x , y , t) = F1(y)exp[i(kx − ωt)]

φ2(x , y , t) = F2(y)exp[i(kx − ωt)]

Dispersion Relation:

ω = ±
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Solution and Analysis

Stable if
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Kelvin-Helmholtz Instability
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Kelvin-Helmholtz Instability
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Form of Solution and Dispersion Relation

The form of solution:

η(x , t) = η0exp[i(kx − ωt)]

φ1(x , y , t) = F1(y)exp[i(kx − ωt)]

φ2(x , y , t) = F2(y)exp[i(kx − ωt)]

Dispersion Relation:
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Solution and Analysis

The perturbation solution is

η(x , t) = η0 exp
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This is unstable for V1 < V2 and V2 < V1.



Kelvin-Helmholtz and Rayleigh-Taylor Instability with
Interfacial Tension
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Kelvin-Helmholtz and Rayleigh-Taylor Instability with
Interfacial Tension
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Form of Solution and Dispersion Relation

The form of solution:

η(x , t) = η0exp[i(kx − ωt)]

φ1(x , y , t) = F1(y)exp[i(kx − ωt)]

φ2(x , y , t) = F2(y)exp[i(kx − ωt)]
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Solution and Analysis

It is unstable when (V1 − V2)2 >
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Graphical Analysis for ρ2 > ρ1
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Graphical Analysis for ρ1 > ρ2
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Benard Problem
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Benard Problem

We wish to study the instability in the fluid owing to heat
transfer - that is, when does the heat transfer mechanism
switch from conduction to convection

Temperature Gradient: dT
dz = −∆T

d

Navier-Stokes Momentum Eqn: ρDv
Dt = −∇p + µ∇2v + ρg

Energy Eqn: DT
Dt = κ∇2T+viscous 2nd order terms

Equation of State: ρ = ρ̃(1− α(T − T̃ ))



Benard Problem - Unperturbed State
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Benard Problem - Unperturbed State

Solving yields:

T0(z) = TL −
∆Tz

d

ρ0(z) = ρ̃(1− α(TL −
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Perturbation and Boussinesq Approximation

We make the Boussinesq Approximation: we take ρ to be
constant and approximately ρ̃ unless it gives rise to buoyancy
forces in the Navier-Stokes eqn

We perturb the state by making it no longer at rest:

v(x , y , z , t) = 0 + v1(x , y , z , t)

T (x , y , z , t) = T0(z) + T1(x , y , z , t)

ρ(x , y , z , t) = ρ0(z) + ρ1(x , y , z , t)

p(x , y , z , t) = p0(z) + p1(x , y , z , t)



New Constitutive Equations

We still have incompressibility: ∇ · v = ∇ · v1 = 0
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Form of Solution and Eigenvalue Problem

We want to find v
(z)
1 to analyse the stability of the system.

We assume the form

v
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Boundary Conditions and Form of Solution

w(0) = w(d) = 0 as v
(z)
1 would be 0 at the boundary, as the

boundaries are not moving.
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Stability for Negative Temperature Gradient

To analyse stability we need to focus on the est factor. Solving
the eigenvalue problem for w(z) yields an equation for s.

Solving (ν − κ)2a6
∗ + 4αa2g ∆T

d > 0 for a yields that in this
case, s is always real

However, for stability, we need s < 0. This is true when
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Where Rayleigh’s number is defined as R = αgd3∆T
νκ



Stability for Positive Temperature Gradient

Solving (ν − κ)2a6
∗ − 4αa2g ∆T

d > 0 for a yields that in this
case, s is not always real.
We require
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in order for s to be real, otherwise we get an oscillating
velocity, where Mason’s number is defined as
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If s is real, for stability, we need s < 0. This is true when
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Which is always true, as the Rayleigh number is always
positive



Convective Unstable Fluid
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