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Rayleigh-Taylor Instability
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Rayleigh-Taylor Instability

@ The problem proposed is a situation with 2 fluids, one atop
the other with different densities. Between them is the
interface n(x, t) which is a perturbation across y = 0.

@ Some assumptions are made:
The vorticity is 0 (it is irrotational) so V x v =0
It is incompressible, meaning the volume is constant. This
results in V-v =20



Equations of State and Boundary Conditions
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Form of Solution and Dispersion Relation
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Solution and Analysis

Re(n) = A1 cos(kx) M(eﬁt — e P

@ This is an unstable exponentially growing standing wave if
p2 > p1, and is a stable standing wave if p; > p»




Rayleigh-Taylor Instability with Surface Tension
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Instability of Fluids with Interfacial Tension

@ Net upward force per unit area due to interfacial tension
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Form of Solution and Dispersion Relation

@ The form of solution:

n(x; t) = noexpli(kx — wt)]
¢1(X7y7 t) = Fl(y)exp[i(kx - Wt)]
¢2(Xay7 t) = F2(y)exp[i(kx - Wt)]

@ Dispersion Relation:

W = i\/(p2 _/'(_pl)(_g(pQ - Pl) + Tk2)



Solution and Analysis

o Stable if
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Kelvin-Helmholtz Instability
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Kelvin-Helmholtz Instability
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Form of Solution and Dispersion Relation

@ The form of solution:

n(x, t) = noexpli(kx — wt)]
$1(x, y,t) = Fi(y)expli(kx — wt)]
b2, v, £) = Faly)explikx — wt)]

@ Dispersion Relation:
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Solution and Analysis

@ The perturbation solution is

n(x, £) = no exp [/ (kx Kvy + Vl)t>

5 k(Vl—Vz)t]+
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Refi(x, £)] = 110 cos (kx - g(v2 + V1)t> (exp [_’;(w + vm]

+ exp [—g(vl — V2)tD

This is unstable for V; < V5 and V5 < V.



Kelvin-Helmholtz and Rayleigh-Taylor Instability with

Interfacial Tension
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Kelvin-Helmholtz and Rayleigh-Taylor Instability with

Interfacial Tension

91 ) _ 9
ox’ Y Oy
92 v _ 92
ox’ Yy

V>£1) =Vi+

V& = vy + 2

2 2 2 2
0°¢1 041 0: 0 ¢2_+ 0°h2 _o

Ox? Oy? - Ox? Oy? ’

91 991,
Jy

02
Jy

0 0
,0,t) = §+V182.

on on

—(x,0,t) = E-I-Vzay.

62
=0: x,0,t)+ T—5 x,0,t

y=0:  pi(x,0,t) . = p2(x,0, 1)



Form of Solution and Dispersion Relation

@ The form of solution:

n(x, t) = noexpli(kx — wt)]
¢1(X7y7 t) = Fl()/)exp[i(kx - wt)]
b2(x,y, t) = Fa(y)expli(kx — wt)]
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Solution and Analysis

(p14p2)(Tk—% (p2—p1))
p1P2

o It is unstable when (V) — V)% >

® k> /%(p2 — p1) is the first necessary condition for stability




Graphical Analysis for p, > p;

Fk) = (p1+ p2)(Tk — &(p2 — p1))
p1p2




Graphical Analysis for p; > po
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Benard Problem
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Benard Problem

@ We wish to study the instability in the fluid owing to heat
transfer - that is, when does the heat transfer mechanism
switch from conduction to convection

o Temperature Gradient: 4L = — 2T
o Navier-Stokes Momentum Eqn: p% — Vp+ uV2v + g

e Energy Eqn: 2L = xV2 T+viscous 2nd order terms
gy Dt

e Equation of State: p=p(1 — (T — 'f'))



Benard Problem - Unperturbed State

vw=20
T = To(2)
p = po(z)
p = po(2)

@ Simplified Constitutive Eqns:
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Benard Problem - Unperturbed State

@ Solving yields:

To(z) = Tp — AdTZ
po(2) = 51— o(To ~ 212 7))
po(z) = C + gpz(a(T, — Azgz ~T)-1)



Perturbation and Boussinesq Approximation

@ We make the Boussinesq Approximation: we take p to be
constant and approximately p unless it gives rise to buoyancy
forces in the Navier-Stokes eqn

o We perturb the state by making it no longer at rest:
vix,y,z,t) =0+ vi(x,y, z,t)
T(x,y,z,t) = To(z) + T1i(x,y,z,t)

p(Xv_vav t) — PO(Z) +p1(X7y727 t)
p(X>y>Z> t) = pO(Z) + Pl(X>y7Z> t)



New Constitutive Equations

o We still have incompressibility: V-v =V -v; =0

o
Lov
,0871 = —Vp1+ uV3vi + p1g
Ty (AT
o Mg =V
p1= —paly



Form of Solution and Eigenvalue Problem

e We want to find vl(z) to analyse the stability of the system.

We assume the form
1 = w(2)f(x.y)e"
e We obtain an eigenvalue problem with eigenfunction w(z)
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Boundary Conditions and Form of Solution

o w(0) = w(d) = 0 as v\?) would be 0 at the boundary, as the
boundaries are not moving.
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@ To satisfy the boundary conditions, we let

w(z) = sin(n%dz); n=1273.



Stability for Negative Temperature Gradient

@ To analyse stability we need to focus on the e factor. Solving
the eigenvalue problem for w(z) yields an equation for s.

e Solving (v — k)2a% + 4aa2g¥ > 0 for a yields that in this
case, s is always real

@ However, for stability, we need s < 0. This is true when
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<
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Where Rayleigh’s number is defined as R =



Stability for Positive Temperature Gradient

e Solving (v — k)?al 4aa2gAdT > 0 for a yields that in this
case, s is not always real.
We require

agATd? S 2774
(v — K)? 16
in order for s to be real, otherwise we get an oscillating

velocity, where Mason's number is defined as
M = agATd? 277r
 (v=k)?

o If s is real, for stab|||ty, we need s < 0. This is true when

agd®AT S 2774
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Which is always true, as the Rayleigh number is always
positive



Convective Unstable Fluid
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